Abstract
|
The POU domain, class 5, transcription factor 1 (POU5F1), plays a vital role in creating pluripotency and maintaining selfrenewal
of the spermatogonial stem cells (SSCs). In this experimental research, the gene and protein expression of POU5F1
in two populations of differentiated and undifferentiated spermatogonia were examined, by immunohistochemistry (IMH),
immunocytochemistry (ICC) and Fluidigm real-time RT-PCR. Our study was extended with online databases and the creation
of PPI networks. The results indicated that the POU5F1 protein was localized in the basal compartment of seminiferous
tubules. Under in vitro conditions, isolated SSC colonies were ICC-positive for the POU5F1, but the protein expression
level of POU5F1 in the undifferentiated populations was higher than that in differentiated. A significant POU5F1 mRNA
expression was seen in passage 4 compared to passage 0 for both populations. POU5F1 has a significantly higher mRNA
expression in undifferentiated SSCs than that in differentiated SSCs, also in mESCs than in SSC-like cells. Bioinformatic
analysis on POU5F1 shows its impressive connection with other genes involved in spermatogonia differentiation. These
results support the advanced investigations of spermatogonia differentiation, both in vitro and in vivo. A better understanding
of the POU5F1 gene and its function during differentiation will give the scientific community an open perspective for the
development of direct differentiation of SSC to other male germline cells which is very important in infertility treatment.
|