Abstract
|
Studies reported that Δ9-tetrahydrocannabinol (Δ9-THC) is an essential drug as an anti-cancer, neuroprotective, anti-inflammatory, and immune-modulatory agent. However, the mechanism by which Δ9-THC causes these events remains to be elucidated. We attempted to investigate the in vivo studies of Δ9-THC on brain microtubule dynamicity, and acetylcholinesterase (AChE) activity. The microtubule polymerization, secondary and tertiary structures of α/β-tubulins, as well as the AChE activity, were evaluated in the experimental groups. The significantly lowest optical density and initial rate of polymerization was observed in THC 3 mg/kg, THC 9 mg/kg, and THC 18 mg/kg treated groups. The content of secondary and tertiary structures of α/β-tubulins was significantly affected in treated groups. The AChE activity was significantly lower in treated groups in a dose-dependent manner. These data highlight the microtubule dynamicity as a molecular target for Δ9-THC, which affects memory dysfunction. However, Δ9-THC can be inhibited the AChE activity and provide an improved therapeutics for neurodegenerative diseases.
|