Keywords
|
NANOG, POU5F1, ES-like cells, Epiblast cells, Spermatogenesis, PPI network
|
Abstract
|
The transcription factors NANOG and POU5F1 (OCT4) play crucial roles in maintaining pluripotency
in embryonic stem (ES) cells. While their functions have been well-studied, the specific interactions
between NANOG and POU5F1 and their combined effects on pluripotency in ES-like and Epiblast cells
remain less understood. Understanding these associations is vital for refining pluripotent stem cell
characterization and advancing regenerative medicine. In this matter, we investigated the associations
between NANOG and POU5F1 in maintaining pluripotency in ES-like and Epiblast cells and how
these interactions contribute to the distinct pluripotent states of these cells. In the present paper, we
examined the pattern of NANOG expression by the immunocytochemical method in embryonic stemlike
(ES-like) cells and compared it with its expression pattern in embryonic stem cells (ESCs). Similarly,
we examined the expression pattern of POU5F1 in ES-like cells, ESCs, and epiblast cells and compared
the expression pattern of these two genes with each other. On the other hand, using Fluidigm Biomark
system analysis, we compared the amount of NANOG mRNA in these three cell lines and differentiated
and undifferentiated Spermatogonial stem cells in several passages. Microscopic observations
indicated the cytoplasmic expression of NANOG in the considered cells; moreover, they showed
a similar expression pattern of NANOG with POU5F1 in the experimented cells. It has also been
suggested that the more limited the cell’s pluripotency, the lower the expression of these two genes.
However, the decrease in NANOG expression is less than that of POU5F1. Fluidigm real-time RT-PCR
analysis also confirmed these results. During the experimental process, protein-protein (PPI) network
analysis shows a significant association of NANOG with other stem cell proteins, such as POU5F1. Our
findings reveal distinct yet overlapping roles of NANOG and POU5F1 in maintaining pluripotency in
ES-like and Epiblast c
|