Abstract
|
Embryonic stem-like cells (ES-like cells) are promising for medical research and clinical
applications. Traditional methods involve “Yamanaka” transcription (OSKM) to derive these cells
from somatic cells in vitro. Recently, a novel approach has emerged, obtaining ES-like cells from
spermatogonia stem cells (SSCs) in a time-related process without adding artificial additives to cell
cultures, like transcription factors or small molecules such as pten or p53 inhibitors. This study aims
to investigate the role of the Nanog in the conversion of SSCs to pluripotent stem cells through both
in silico analysis and in vitro experiments. We used bioinformatic methods and microarray data to
find significant genes connected to this derivation path, to construct PPI networks, using enrichment
analysis, and to construct miRNA-lncRNA networks, as well as in vitro experiments, immunostaining,
and Fluidigm qPCR analysis to connect the dots of Nanog significance. We concluded that Nanog
is one of the most crucial differentially expressed genes during SSC conversion, collaborating with
critical regulators such as Sox2, Dazl, Pou5f1, Dnmt3, and Cdh1. This intricate protein network
positions Nanog as a pivotal factor in pathway enrichment for generating ES-like cells, including
Wnt signaling, focal adhesion, and PI3K-Akt-mTOR signaling. Nanog expression is presumed to play
a vital role in deriving ES-like cells from SSCs in vitro. Finding its pivotal role in this path illuminates
future research and clinical applications.
|